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InlroductiQn 

Af th. cor. o« many th.or.m provmg «y.t.m, i, , uni(ic,,10n ,lf0ri,hm wh(eh „^ 

'or a p.(r .. mput .xpr.sslonS a 8.t of un-fymg «ubst.tut.on«. Mitnm.n1, lo th, y.ri.bl.s of 

IN. .Xpr.stlons wh(ch maK. Ih. two .xpr«S1onS .qü(va,.nt Typ(C.( it th# .^^^ 

algor.thm of Robmson [6] for un.fyme atom.c formula, of th. fir.t ord.r Pr.dic.t. calculus in 

resolution theorem proving [1] 

Th.s worK tr.ats th. c«. of unHymg t.rms of th. f.rst ord.r pr.d.cat. calculus wtmrm 

th. funct(on .s assoc.t.v. and commutat.v. Such functions ar. m.th.m.t.cally important mi 

thus of (nt.r.st to d.v.lop.rs of th.or.m prov.ng programs. Exampl., of such function, .r, 

th. artthm.tic addition and multiplication functions. 

Th. cas. wh.r. th. function is simply commut.tiv. i. .„iiy handl.d by . trivial 

ext.nSion Jo Robinson's unification algonthm which unit,« th. argum.rts of on. t.rm again.» 

permutations of Hi. arguments of th« other t.rm. 

Th. cas. wh.re th. function is s.mpl/ „sociativ. is quit, difficult and w. know of no 

general solution Suggestive of the d.fficulty of this problem ,s th. fact that th.r. may b. an 

mfmil. number of unif,ers for a pa,r of terms. For example, the t.rms f(xa) and f(ax, wh.r. f 

i. associative, a is a constant, and x is a vanabl. has unifiers with KM. x.f(aa). x.f(aa.), .... 

(We represent the argument Ustr of associativ. functions with no .xtra p,r.nth.s.,. i.... 

f(abc) rather than f(af(bc)) or f(f(ab)c)) 

Two principal approaches to handling assoc.at.vity or commutativity ar. availabl. The 

f.rst. stand,rd approach is to represent the t.rms conventionally, i., f(af(bc)) or f(f(ab)c) 

rather than f(abc). and ax.omat... th. associativity or commutat.vity prop.rty. The 

associativity   axiom   would   be   f(xf(y2)H(f(xy),,   and   th,   c0mmü,aljvj,y   „^   wou|d   b<| 

<(xy).f(yx)     These   axioms  could  be  appli.d usmg  some  equality  inference  rules  such  as 

paramodulation [5] 

The second approach represents assoctiv. funct.ons as functions with an arbitrary 

i 
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number of ar|urT.«nt», i.«, uses f(abc) r«th«r Ihtn f(af(bc)) or f(f{«b)c) Spocial purpos« 

unification algorithms aro providod for form« who«« function« ar« a««ociativ«, commutativo, or 

both. £xampl«« of thi« approach in fir«t ordor prodicat« calculus thoorom proving ar« 1h« 

work of Novins [2] and Slagl« [8] Th« algoriil'.m« for associativity, and for associativity and 

commutativity ar« incomplot«, i«, th«y fail to raturn «II th« unifi«r« in torn« en««. An 

•xampl« of this approach in th« ar«a of programming language« for problom solving i« th« us« 

of th« «««ociativ« data typ« tupl« or /eclor and associativ« and commutativ« data typ« bag in 

th« QA4 and QUSP languag«« [7,A]. Again, in thi« ca«« th« algorithm« for .^attorn matching 

(unifying) th«s« «xpr«s«ions ar« incomplot«. In both th««« ca«««, th« incomplot« algorithms 

ran b« augmented by 8 process which altar« th« input expressions to cause th« unification 

algorithm appliod to th« altered expressions to return additional unifior«. Th« addition of thi« 

process (Siagle's widening operation for th« first order predicat« calculus [8] and Stickel's 

variabl« «putting oporation for «xpressions of QA4 and QLISP [9]) results in completeness 

Widening and variabl« «plitting ar« both oporation« that must b« performed on on« or both 

input expressions an arbitrary number of times, replacing single variabl«« of th« expressions 

uniformly by two variable«; it i« essentially (repeated) paramoduiation by th« functionally 

reflexive axiom. 

An «xampl« of th« latter approach i« th« unification of f(abz) and f(xy) wh«r« f it 

associativ« and commutativ«. Th« special purpose unification algcithm would return th« 

unifi«rs {««-a, y»-f(bz)}, {x«-b, yH(az)), [ft, y«-f(ab)}, {xH(bi), y«-«), {xH(«z)r y«-b)t and 

{x«-f(ab), y4-z}. But this i« an incomplete set of unifier« sine« th« possibility that th« value of 

z is not wholly contained in either th« value of x or th« value of y is not represented After 

performing a widening oporation on f(abz) resulting in Uabz^) by instantiating z by Uz^), 

additional now unifier: such as {xH(aZ|), yH^), zHfz^)} ind (xH(«bZ]), y-fy 

2«-f(2|22)l ar« returned by th« unification algorithm. 

Related to this approach, though different in detail, is Plotkin's work on the th ory of 

_.„_________ 
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bu.ldmg in aquation«! (haorias [3] of which associativity and commutativity ar« •xamplcs. In 

th« cas« cl associativity, PlotKm rttams terms in a normal form: right associative form, 

although it could «quivalantly havo been our unpartnthtsizad form His equivalent of the 

widening rule, the replacement of a variable by two new variables, is applied con-.inually 

inside the unification algorithm rather than being used outside it. Thus his unification algorithm 

may generate an infinite number of unifiers as opposed to a unification algorithm guaranteed 

to produce a finite number of unifiers and a potentian, infinite process (widening) for altering 

input« to the unification algorithm to obtain additional unifiers. The differeno M approaches 

beems to be principally one of organization of the search process. 

In this paper, we present a new special purpose unification algorithm which we call the 

AC u.'iification algorithm for terms whose functions are associative and commutative which 

returns ■ complete set of unifiers. This algorithm eliminates the need for axiomatizing 

associativity and commutativity and also eliminates the cost of continually applying these 

axioms which often results in much unnecessary or redundant computation. It also eliminates 

tue need for using the process of widening or variable splitting whose necessity (for 

discovering a complete set of unifiers in the case of unifying any particular pair of 

expressions) is difficult to ascertain. 

Terminology 

Definition   A Ifiun is defined to be 

(1) a constant, 

(2) a variable, or 

(3) a function symbol succeeded by a list of »erms (the arguments of the function). 

We shall use the symbols a, b, and c to represent constants, x, y, and z (possibly 

indexed) \o represent variables, and f to represent a function which is associative and 

commutative. 

 -          ■ ... 
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DtiimtiQn A aubititutifln compontinl ic an ord«r«d pair of a variabl« v and a term t 

writtan as v*-t. A substitution component denotes the assignment of the form to the variable 

or the replacement of the variable by the form. 

üefinition A substitution is a set of substitution :omponentt with distinct first elements, 

<.m., distinct variables being substituted for Applying a substitution to an expression results in 

tho replacement of those variables of the expression included among the first elements of th« 

substitution components jy the correspondir; terms. The substitution components are applied 

to the expression in parallel and no variable occurrence in the second element of a 

substitr*ion component will be replaced even if the variable occurs as the first element in 

another substitution component. Substitut ons will be represented by the symbols a and 9. 

The application of substitution 9 to expression \ is denoted by A|. The composition of 

substitutions §9 denotes the substitution whose effect is the same as first applying substitution 

#, then applying substitution a, i.e., A(9«) « (Af)« for every expression A 

DflflnitiOn A unifying substitution or uailifiJl of two expressions is a substitution which 

when applied to. the two expressions results in equivalent expressions. In ordinary unification, 

two expressions are equivalent if and only if they are identical. In unification of argument lists 

of commutative functions, two expressions are equivilent if they have the same function 

symbo  and the same arguments in the tame or different order. 

DfltlhtlOn Term s is an UUIAIUA of term t, and t is a generili2ation of s, if there exists 

a substitution I such that M«s. 

Similarly, substitution f is an instance (generalizition) of substitution * if, for every 

term t, t# is an instance (generalization) of It. 

Ibi AC Uniticition Algorithm 

Wo present hero an algorithm for unifying two terms whose function is associative and 

___________ __ 
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commutativ«. Terms will b« represented at if the function had an arbitrary number of 

argumentt with no superfluous parentheses. 

We will assume that the argument lists of the two terms being unified have no common 

arguments. This presents no difficulty since no unifiers are lost and efficiency is gained if 

common arguments are eliminated immediately. This is done by removing common arguments 

a pair at a time, one from each of the argument lists. For example, before unifying f(xxyabc) 

and f(bbbcz), the b's common to the two terms are removed yielding f(xxyac) and f(bbcz), and 

the c's common to the two new terms are removed yielding f(xxya) and f(bbz). An example of 

the utility of immediately removing common arguments is the unification of f(g(x)y) and 

f(g(x)g(a)). If the g(x)'s common to the two terms are immediately removed, the unification 

algorithm will return the moit general unifier {y«-g(a)}. If the common g(x)'s are retained, 

unification will likely result in the generation of the additional less general unifier 

{x*-a,y«-g(a)}. 

The algorithm will be expressed partially in terms of an algorithm for the complete 

unification of terms with an associative and commutative function with only variables as 

arguments. The result of unifying such terms is an assignment to each variable of the terms 

some sequence of terms. Each variable is assigned a term tj (v/hose function symbol is not f) 

or a term f(t|Rl...t|n
nm) (with n1 occurrences of term tj as arguments of f). For such an 

assignment to be a unifier, the only requirement is that for each term tj used in any 

assignment there are the same number of occurrences of that term occurring as arguments of 

f in each of the unified terms instantiated by the assignment. For example, in unifying 

((x|X|X2X3) * d Uyj/iy^). 't term t is part of some assignment to one of the variables, then 

2 times the number of occurrences of t in the assignment for Xj plus the number of 

occurrences of t in the assignment for X2 plus the number of occurrences of t in the 

assignment for x^ must equal 2 times the number of occurrences of t in the assignment for yj 

plus  the number of occurrences of t in the assignment for y2    Fn- example,  {x|H(bb), 

  - ■■■ - ■■ - ■   "^—- 



»   I ■■ 

X2*-U«b), K3«-», y|«-b, y2,-f(a«bbb)} is • unifi»r of f(X|KjK2X3) »™* •(yiy|y2) «""€• 'b«r» ar« 

2 as and 5 b's in lh« mtUnlutions of fUiX!^)^) and f(yiyiy2) w'*h ,h» unified t«rm b«ing 

f(aabbbbb) 

With «ach pair of farms with an associativa and commutativa function with only varwbl« 

argumants is associated a singla aquation raprasanting the number and multiplicity of variables 

in each term For example, the equation 2xj«X2»X3 « 2yj»y2 is associated with the pair of 

terms given above This equation succmtly represents the condition for a substitution to be a 

unifier: that the sum of the number of occurrences of any t irm in the value of each variable 

multiplied by the multiplicity of the variable in the term must be equal for the two terms. 

Non-negative integral solutions to such equations can be used to represent unifiers. 

The solutions must be non-negativ«* integral since each variable must be assigned a 

non-negative integral number of occurrences of each term 

In order to generate all the solutions to the problem of unifying the two terms, it is 

necessary to be able to represent all the solutions to the equation derived from the terms. 

Every non-negative integral solution to the equation is representable as a sum of elements of 

a particular finite set of non-negative integral solutions to the equation, i.e., every 

non-negative integral solution to the equation is a sum (equivalently, a sum with non-negative 

integral weights) of elements of a particular finite set of non-negative integral solutions. The 

finite set of non-negative integral solutions by whose addition the entire non-negative integral 

solution space is spanned is generable by generating in ascending order of value solutions to 

the equation, eliminating those solutions composable from those previously generated. This 

process can be made finite by placing a bound on the maximum solution value which will be 

used; such a maximum is proved in a later lemma to eliminate no needed solutions. 

-  - ■ 
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1 
»1 
0 

»2 
0 

'3 
1 0 

2 0 1 0 0 
3 0 0 2 1 
4 0 1 1 1 
5 0 2 0 1 
6 1 0 0 0 
7 1 0 0 1 

Consider lh« «quation 2XI»X2*ä3 « 2y\*y2   Solutions to th« equation are: 

X2   2AilÄ2li3 2X11^2 
II                  ! z| 
11                  ! z2 
0             2                 2 z3 
0             2                 2 Z4 

0 2 2       z5 
2 2 2       26 

0 2 2       z7 

Associated with «ach solution above is a new variable (in th« rightmost column).   Th« 

assignment of as many occurrences of that variable as specified in the solution to each of th« 

variables of th« original term results in a partial solution to the unification of the th« original 

terms    In particular, th« assignment of 2 occurrences of variable Z3 to X3 and 1 occurrence to 

yi   results  in  an  «qual  number of occurrenc«s of variabl« 23 in «ach of f(X|X 1X2X3)  and 

Uyiy2) 

Every   non-negative   integral   solution   to  the   equation   is   a   (non-negative   integer 

weighted) sum of th« 7 solutions presented above, i.e., every solution is representable as 

xj"Z6*27, X2"Z2*24*2z5, X3S21»2z3»Z4, yj=Z3»24»25»z7, y2«Z|*Z2*2z6 for som« 

non-n«gafiv« int«gral valu«s of zj,...^. How«v«r, not «very solution to th« equation is a 

solution to th« unification problem for which the equation was derived. There is an additional 

constraint that each variabl« of th« original terms must be have at least one term in its value; 

it cannot hav« zero terms in its valu«. 

Hence, we must form that subset of the 27 = 128 sums lor which each element of th« 

5-tupl« is non-z«ro. (It is not necessary to consider sums in which any solution has a 

coefficient other than 0 or 1 sine« such solutions (in th« unification problem) ar« already 

representable sine« th« solution's inclusion with coefficient 1 introduces a variabl« which can 

hav« as its valu« an arbitrary number of terms as arguments of f thus simulating th« cas« of 

th« coefficient being greater than 1.) There ar« 69 such sums including for example 

(representing th« sum by th« set of its indices) {2,3,6}, {1,2,3,6}, and {4,6} with associated 

unifi«rs 

7 
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|K,«-26, X2-Z2, X3-f(2323)1 y1»-73I y2-<(z2^6'). 

{*l-26, x2-22, X3«-f(j|7323;, y1^231 y^ffcjz^g)), and 

Note that if a variabl« could have as its value 2ero terms rather than one or more 

terms as in the first order predicate calculus, it would be unnecessary to form this subset of 

2n (where n is the number of solutions) sums. Only the sum of all the solutions would be 

required since any variable present in this sum could have value zero, and the variables in the 

corresponding unifier could be matched against 2ero terms This is the situation with fragment 

variables  n the bag Ma type in QA4 and QLISP [7,4] (see [9]). 

To be more precise in the definition of the *ifcc'ithm, the algor ...m consists of the 

following steps: 

1. Form an equation from the two terms where the coefficient of each variable in the equation 

is equal to the multiplicity of the corresponding variable in the term. 

2. Generate all non-negative integral solutions to the equation eliminating all those solutions 

composable from other solutions 

3. Associate with each solution a new v nable. 

4. For each sum of the solutions (no sol ition occurring in the sum more than once) with no 

zrro components assemble a unifier compoied of assignments to the original variables with as 

n any of each new variable as specified by thi solution element in the sum associated with the 

new variable and the original variable. 

Now we present the complete algorithm for unifying general terms with associative and 

commutative functions using the algorithm for the variable only case above. We are here 

concerned with terms whose function is associative and commutative with arbitrary arguments, 

i.e., arguments that may contain ordinary (non-assoriative, non-commutative) functions or f or 

other functions which are associative and commutative. We assume the presence of ordinary 

unification to deal with those aspects of the unification problem not dealt with explicitly here. 

■   -- 
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First, when unifying two terms, two now terms with only variable arguments are formed 

by uniformly replacing distinct arguments by now variables. These new terms have only 

variable arguments and are generalizations of the original two forms. For example, in unifying 

f(xxya) and f(bbz), we form generalizations f(x|X|X2X3) and Uyiy^) with substitution 

{xj«-x, X2*-y, xj^-a, y|«-b, y2*"») instantiating the new terms to the original terms. 

Next, using the previous algorithm for the variabio only case, we unify the 

generalizations of the original terms. This has already been done for the example above 

resulting in 69 unifiers as stated previously. 

Now we have the generalizations of the two original terms, a substitution to instantiate 

them to the original terms, and a complete set of the r unifiers. Every unifier of the original 

terms ir a simultaneous instance of the substitution to instantiate the generalizations to the 

original term« and a unifier of the generalizations. So all that is necessary to get all the 

unifiers of the original terms is to unify (for each variable being substituted for) the value in 

the substitutior. and the value in the unifiers. 

In the example, X3 must have value a and y| must have value b. Thus, any unifier of 

f(xjX|X2x3) *nd Uy-Yi)^) which assigns to <« or y2 a non-variable, i.e., a term of the form 

f(...) may be immediately excluded from consideration since the unification of it with the 

assignment including Xj«-a and y^b will fail. (This constraint could be applied during the 

generation of sums of solutions to the equation rather than afterwards.) This constraint 

eliminates 63 of the 69 unifiers, leaving sums (1) (4,6), (2) {2,4,6}, (3) (1,5,6), (4) {1,2,5,6}, 

(5) {1,2,7}, and (6) {1.2,6,7} with associated unifiers 

(i) {«i^e- 1(2,"I4' «s4"^- yi*"^« y2H(2626,l- 

(2) {x^zg, x2H(z2-:4), X3«-z4, yi^, Y2-*b2z676))< 

(3) {«i'-ze' K2H(25Z5,• X34"21' y|*"25' y2H(ilJ626)}' 

H) {*l*Hi >«2H(z225z5,• X3,"21' y|*"25' y2H(2lz2z626,^ 

(5) {xi«-z7, X2*-22' "f**!« ^1*^7« y2HtzlI2)l' •nd 

(6) {xi«-f(z6z7), x2«-Z2, xa4"^, yj«-z7, Yz^^i^HH^ 

9 
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Unifyinf »«ch ol lh«s« with {X|«-x, *2*'y> x3•",• Vl^- Vz*"^' w* ob*"'n 

(1) no unifier sine« z^-a and i^-h are not unifiabl«, 

(2) nn unifier sinr^ 24«-a and z^b are not unifiabl«, 

(3) {x«-26, y*-f(bb), zH(az6z6)) (• {yH(bb), zH{axx))), 

(4) {x«-z6, y«-f(bbz2), z-f(az2Z6z6)} (• {y*-f(bbz2), vf^xx)}), 

(5) {x*-b, y«-Z2, 2«-f(az2)} (« {x«-b, z«-f(ay)))), and 

(6) {xHCbzg), y*-z2l z-f(az2z6z6)} (- {x-f(bz6), zH(ayz6z6)}). 

This is a complete set of unifiers of f(xxya) and f(bbz). 

Since X3 and y] of the variable only case correspond to a and b respectively, and a and 

b are not unifiable, any sum including solution 4 to the equation 2*\**2,*3 ' ^1^2 can be 

excluded from consideration since it would require (as in (1) and (2) above) the unification of 

a and b. As with the constraint on variables corresponding to non-variable terms not being 

assigned more than one variable (terms of the form f(...)) in the variable only case, this latter 

constraint on solutions can be applied during the generation of unifiers in the variable only 

case rathter than afterwards Elimination of solution 4 before generation of the 2n sums, and 

elimination of sums which do not meet the first constraint would result in the formation only of 

unifiers (3), (4), (5), and (6) of the variable only case, each of which has a corresponding 

unifier in the general case. 

More precisely, the algorithm consists of the following steps: 

1. Form generalizations of the two terms replacing each distinct argument by a new variable. 

2. Use the algorithm for the variable only case to generate unifiers for the generalizations of 

the two terms. The variable only case algorithm may be constrained to eliminate the 

generation of unifiers assigning more than one term to variables whose value must be a single 

term, and the generation of unifiers which will require the later unification of terms which are 

obviously not unifialle. 

3. Unify for each vaiable in the substitution from step 1  and the unifiers from step 2 the 

10 
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variibl« valj«t and raturn MM ratuliing Mtitninanti for variabt«« of th* original torms.   Thi« 

it ■ complol« sot of unifiorc of tho original tormi. 

Proof Of Termination. «Joundne«. »nri rQmD\a\anm^ 
Ql thfl AC Unification Alyorit^^ 

W« will first «stablish tho validity of •liminating arguments common to tho two Urms. 

This will bo dona by proving that any unifior of tho forms is a unifior of th« farms with a pair 

of common arguments ramovod and vico vorsa. 

IhMOlMm Lat «i,,«m,t,,..ltn bo farms with s^ for somo i,j. Lot # bo a unifior cf 

f(«,...sm) and ICt,„.tt), and lot , bo a unifi»/ of fUi-«^,«^,..«„,) and f«,...^.,^,...!„). Then 

(O # is a unifior of H^-^t^...^) and fd,...^,^,...^), and (2) » is a unifior of Us,..^) 

•ndf«, ..tn). 

Proof. 

1. fM<«l ••«i-l'i»! 8m^ ■ K»|"V* • Wl-W ' Ut^O,...^,^,...^)!), and i^jf. 

Thoroforo fUi-Sj.,^,,..^.» - Ut,,..^,^...!,,)* and i is a unifior of fUi-tj.,«^,..^) and 

2.Ht|.~t|-l^|...tJo        -        f(t,...tj.itjM...tn)ff        and        tjotj». Thoroforo 

,(8i',("l- •8i-l,i»l- 8m>») " f(«l   «m>» " '»l V " ««f*«! •Vjtj.j.^W •nd a is a unifior of 

f(s1...sm)andf(t1...tn). QED. 

Tho lomma bolow ostabiishos that ovory non-nagativo integral solution tc an equal on of 

the form ajx,«..^,,, . b,y1»...*bnyn is composable as a (non-negative integral weighted) 

sum of a fixed finite set of non-negative integral solutions. It also establishes a solution value 

within which all the non-negative integral solutions in the sat may be found. 

Ltmmi. Every non-negative integral solution (x,,..^.y,,...^) to the equation 

■I'V-^n/m " biyi**bnyn w'<h P<»'«'v« integral coefficients a,,....a^bj,...^ is an additive 

11 
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linear combination of non-n«ca1iv« integral solutions with viluc a|X|*...*imxm ''tiyj* ♦bnyn) 

lost than or wqual to the maximum of m and n Wtrj* th« maximum of th« loaat common 

multiples of pairs of numbers on« from aj,...,am and r.io from bj,  (bn 

Proof. Assume with no loss of ganarality tl'it th« least common multiple (lem) of rij and 

b| is th« maximum of th« leas» common multiples and that m>n 

Proof by mo jction on th« valu« of a solution k. 

K'O. Th« solution with K«0 with X|«0, ..., '<m
r0, y^O, ..., yn«0 is generable as th« 

additiv« linear combination of non-negative integral solutions with valu« less than c «qual to 

m*lcm(a|,b|) with zero co«ffici«nts. 

Assum« th« lemma is tru« for every non-negative integral solution with valu« less than 

or «qual to K.   Prove it is tru« for k 

Cas« 1. K < m»lcm(a|,bj) In this cas«, th« solution is included among th« non-negative 

integral solutions with valu« less than or «qual to m*lcm(i-| ,b]) and th« lemma is tru«. 

Cas« 2. k > m*lcm(B|,bj) Sine« a|X|*...*a|nxm ■ k > m«lcm(a|,b|), and «ach ajXj>0, at 

least on« a,*, must b« greater than lcm(a|,b|), and Xj must be greater than lcm(a| ,b| Va, 

Similarly, sine« b|y|» •bnyn « k > m*lcm(a| .b,), and each b:y:>0, and n^m, at least on« t /. 

must b« greater thin lcm(a|fb|), and y must b« greater than lcm(a|,b|)/b:. Consider th« 

solution with x|=lcm(a|,bJ)/a|, y ^Icmla^b )/b:, and all other variables zero This is just th« 

solution in lowest terms involving only Xj and y. and has valu« lcm(aj,bj) < lcm(a|,b|) Sine« 

lcm(a|tb|)/aj > km{al,b)/tl and lcm(a|,b| )/b: > km(sl,bl)/b by th« maximality of Icmlapbj), 

th« solution involving only x( and y can b« subtracted from '.he solution with valu« k leaving a 

non-negative integral solution as result. But this difference solution has valu« k-lcm(«j,b:) < K 

and is thus composabl« from solutions with valu« less than or «qual to m*lcm(a1,b1) 

Therefore, th« solution with valu« k > micicmla^bj) is th« sum of som« solution involving only 

Xj and y with valu« less than or «qual to IcmCa^bp and som« other set o( solutions with 

valu« less than or «qual to m*lcm(a1,b|) and th« lemma is tru« for this cas«.  QED. 
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Th« loroma proves an upper bound on solution values that must b« examined in the 

determination of • complete se' of non-negative Integra! solutions which span the 

non-negative integral solution space by addition. We believe that tighter bounds can be 

proved Although a proof for a tighter bound would be desirable, it should be noted that a 

lower proven bound would not reduce the number of found solutions theoretically necessary, 

but only decreases the cost of computing them, and would have no effert on the form or 

number of unifie s returned by the algorithm. This is true since any additional solutions 

discovered usin^ a I igher bound than necessary must oe composable from solutions bounded 

by any proven lower bound and would therefore be recognized as redundant and be omitted. 

The maximum of the least common multiples of the coefficients one from the left side 

and one from the right side of the equation is a low, bound on solution values which must be 

examined, i e, solutions with at least this value must be examined This is because one of the 

needed solutions not otherwise generable is the solution involving only the variables with 

those two coefficients with maximum least common multiple and having value equal to the 

maximum least common multiple 

IhflOram The AC unification algorithm for terms with associative and commutative 

function with only variables as arguments always terminates, is sound (returns no substitutions 

which are not unifiers), ard is complete (every unifier is an instance of a returned unifier). 

Proof. The algorithm is guaranteed to terminate since it performs a finite nunber of 

operations on the finite number of non-negative integral solutions generated from the «quation 

corresponding to the two terms The generation of these solutions is finite due to the trial 

solution values being bounded. 

Th? algorithm is sound since each so*1' jn of the derived equation causes the 

introduction into each of the instantiated terms of an equal number of new variable 

occurrences. Thus, the 1*0 instantiated terms have the sare number of occurrences of each 

new variable and are therefore unified. 
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Any uniti*r must M^gn to each variabl« a l*rm of th« form tj (whose function symbol is 

not f) or a term f«,"!..Im
nm) (with n, occurr«nc«s of form tj us ariumtnts of f).   Lol k bo tho 

c-rdmälily of th. t.l of such forms t, in any solution to th« unification of a pair of torms with 

only  variables  as arguments    Th« two instantiated .«rms must havo an oqual  nj-nbor of 

eccurroncos     of     .Kh     o»     th.so     K     t.rm.     as     arfum.nts     of     f.       That     is, 

•leil**amcim " bldil*  *bndin (1^K) wh•'■• "« •« th« numbar of distinct variabl«s in th« first 

t«rm  b«ing  unifi«d, n is th« numb«r of distinct variablos in th« s«conc< t«rml  a   is  th« 

multiplicity of th« j«h variabl« in th« first t«rmf bj is th« multiplicity of th« j<h v.habl« in th« 

second t«rmP c^ it th« numb«r of occurr«nc«8 of t<.rm i in variabl« j in th« first t«rm( and dj 

is th« number of occurr«nc«s of t«rm i in variabl« j in th« second t«rm. 

Each tupl« (Cj!, .c^.dj,, ,din) is a solution to th« «quation 

•lKl* 'Vm " bl/l* 4bnyn wrasponding to th« t«rms being unifi«d. It can thus (according 

to th« lemma) be form«d as th« sum of c«rtain non-n«gativ« rnt«gral solutions to th« «quation 

weighted by positiv« integers. 

Consider the unifier corresponding to the sum of all those solutions to the equation 

which are required in the formation of any of the tuples (cil,...IcjfnIdJ1,..fHjn). We will show 

that th« hypoth«siz«d unifi«r is an instanc« of this unifi«r returned by th« algorithm. 

Include in the value of the new variable associated with each of these solutions « 

number of occurrences of term i equal to the coefficient of the solution in the weighted sum. 

This will result in the proper assignment of c^ occurrences of term i to each variable j of th« 

Jirst t«rm and djj occurrences of term i to each variable j of the second term. 

Do this for «Kh of th« k t«rms in th« solution. L«t no other or additional t«rms be 

includ«d in th« values of th« new variables. 

This assignment of terms in the solution to new variablas associated with «quation 

solution« generated in th« unification process results in the correct number c^ or dr of «ach 

t«rm being assigned to «ach variable of the original two terms. 
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Thus, any solution to the unification of two terms with only variables as arguments is en 

instance of a returned unifier and the algorithm is complete   Q£D. 

IhflOrfltn Ihe AC unification algorithm for general terms with associative and 

commutative function always terminates, is sound, and is complete 

Proof Let s and t be any two terms be^ng unified Let s* and t* be the terms 

resulting from reolacmg each i.ilmct term by a new variable s* and t* are generalizations 

of s and t respectively, te, s*^s *t'\ for some $ of tue form {   ,Xj»-Cj,..} where each Xj 

is a new variable and each c, is the term in s or t it replaces in s* or t* 

Let {ffj} denote the unifiers of s* and t* returned by tin. <n;'icaticn algorithm for terms 

with associative and commutative function with only vari.ibie; as arguments Each o is of the 

form { ,Xj«-dj, ) where each x, is a variable of s* or t* 6-.d d, is th& term assigned to it by 

the unification algorithn According to the previous theorem, unification terminates, is sound, 

and is complete for this case 

Simultaneous msiance« of * and a. represent unifiers of I and t since 6*#=s, t**=t, and 

unifying each Cj with each dj of a returned unifier y of s* and t>;: results in (by the 

assumption of termination, soundness, and completeness of the recursive call on the unification 

algorithm for terms of iesser complexity) a complete set of unifiers for the original terms s 

and t.   QED. 

Conclusion 

We have presented an algorithm for unifying general terms with associative end 

commutative function. We have proven th. the algorithm is guaranteed to terminate, is sound, 

and is complete 

Tha advantages of this algorithm as compared to other approaches to un-'ying such 
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terms ar« that Ih« Msociftivity and commutativity properties need not be axiomatized and that 

all the unififc s r' a pair of such terms are immediatel)' returned eliminating the unnecessary 

and redundant coirputation often occurring in other approa^hos which generate only some of 

the unifiers at each step with nc indication of wirten all the LWS have been generated. 
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